Answer:
The coordinates of point t are (22,6)
Step-by-step explanation:
we know that
The formula to calculate the midpoint between two point is equal to
[tex]s=(\frac{x1+x2}{2},\frac{y1+y2}{2})[/tex]
we have
s(6,4)
(x1,y1)=r(-10,2)
Let
t(x2,y2)
substitute the values
[tex](6,4)=(\frac{-10+x2}{2},\frac{2+y2}{2})[/tex]
Solve for x2
[tex]6=(-10+x2)/2\\12=-10+x2\\x2=12+10\\x2=22[/tex]
Solve for y2
[tex]4=(2+y2)/2\\8=2+y2\\y2=8-2\\y2=6[/tex]
therefore
The coordinates of point t are (22,6)