Respuesta :

Answer:

[tex]y=Ce^{-x}[/tex]

Step-by-step explanation:

We are given that a differential equation

[tex]y'+3x^2y=0[/tex]

We have to find the general solution of given differential equation

General differential equation of first order and first degree is given by

[tex]y'+p(x)y=Q(x)[/tex]

Compare given differential equation with the general equation

Then , we get [tex]P(x)=3x^2[/tex],Q(x)=0

Integration factor=[tex]\int e^{3x^2dx}=e^{\frac{3x^3}{3}=e^x[/tex]

[tex]y\cdot I.F=\int Q(x)\cdot I.F+C[/tex]

Substitute the values then we get

[tex]y\cdot e^x=0+C[/tex]

[tex]ye^x=C[/tex]

[tex]y=Ce^{-x}[/tex]

Hence, the general solution of given differential equation

[tex]y=Ce^{-x}[/tex]

ACCESS MORE