Answer:
a)[tex]Q(t)=Q_{0}e^{(ln10/50)t}[/tex]
b) 150min
Step-by-step explanation:
a) Using the formula for colony growth [tex]Q(t)=Q_{0}e^{kt}[/tex] we need to find the specific value of k, to do this you'll use the time, initial and final number of colonies provided in your problem.
[tex]Q(t)=Q_{0}e^{kt}\\\\10000=1000e^{k(50)} \\\\\frac{10000}{1000}=e^{50k} \\\\10=e^{50k}\\ ln(10=e^{50k})\\\\ln10=50k\\\\k=ln10/50\\\\Q(t)=Q_{0}e^{(ln10/50)t}\\\\[/tex]
b) Once we have our expression we only have to use our final and initial number of bacteria to find t.
[tex]Q(t)=Q_{0}e^{(ln10/50)t}\\\\\\1000000=1000e^{0.046t}\\ 1000=e^{0.046t}\\ln( 1000=e^{0.046t})\\ln1000=0.046t\\t=ln1000/0.046\\t=150 minutes[/tex]
I hope you find this information useful! good luck!