Answer:
v₀= 19.23 m/s
Explanation:
Look at the attached graphic
Foam dart Kinematic 1-2 (upward movement), vf₂=0 ,
We calculate t₁ and y₁ to reach the highest point (2)
vf₂=v₀-gt₁
t₁=v₀/g
v f₂²=v₀²-2g*y₁
2g*y₁ =v₀² , y₁=v₀²/2g
Foam dart Kinematic 2-3 (downward movement), v₀₂=0 ,
We calculate t₂ and y₂ from the highest point (2) to
touch the ground (3)
vf₃=v₀₂+gt₂ , v₀₂=0
gt₂=vf₃ , t₂=vf₃/g
vf₃²=v₀₂²+2g*y₂
[tex]v_{f3} =\sqrt{2*g*y_{2} }[/tex]
y₂= 1.5+y₁
y₂= 1.5+v₀²/2g
[tex]v_{f3} =\sqrt{2g(1.5+v_{o}^{2}/2g) }[/tex]
[tex]vf_{3} =\sqrt{v_{o}^{2}+29.4 }[/tex]
We propose the equation for the total time (Four seconds) :
t₁ = time it takes from position 1 to position 2 (going up)
t₂: and time that takes from position 2 to position 3 ( going down)
t₁+t₂=4
v₀/g+ vf₃/g =4
v₀ + vf₃ =4g
[tex]v_{o} +\sqrt{v_{o} ^{2}+29.4 } =4*g[/tex] : we move v to the other side and square both sides of the equation
v₀²+29.4=(4g-v₀²)²
v₀²+29.4=(4g)²-8gv₀+v₀² we eliminate v₀²
29.4=(4g)²-8gv₀
8*g*v₀=(4*g)²-29.4
v₀=1507.24/78,4
v₀= 19.23 m/s