Answer:
x=4, y=4, λ=-16
Step-by-step explanation:
We have this 3x3 system of linear equations:
[tex]4x+[/tex]λ[tex]=0[/tex]
[tex]4y+[/tex]λ[tex]=0[/tex]
[tex]x+y=8[/tex]
So, let's rewrite the system in its augmented matrix form
[tex]\left[\begin{array}{cccc}4&0&1&0\\0&4&1&0\\1&1&0&8\end{array}\right][/tex]
Let´s apply row reduction process to its associated augmented matrix:
Swap R1 and R3
[tex]\left[\begin{array}{cccc}1&1&0&8\\0&4&1&0\\4&0&1&0\end{array}\right][/tex]
R3-4R1
[tex]\left[\begin{array}{cccc}1&1&0&8\\0&4&1&0\\0&-4&1&-32\end{array}\right][/tex]
R3+R2
[tex]\left[\begin{array}{cccc}1&1&0&8\\0&4&1&0\\0&0&2&-32\end{array}\right][/tex]
Now we have a simplified system:
x+y+0=0
0+4y+λ=0
0+0+2λ=-32
Solving for λ, x, and y
λ=-16
x=4
y=4