Respuesta :
Answer:
- Maximum speed [tex] 20.16 \frac{ft}{s} [/tex]
- The acceleration is [tex]37.33 \frac{ft}{s^2}[/tex]
- The time duration of the acceleration is [tex] 0.5401 s [/tex]
Explanation:
We will using the following kinematics equations for position and speed at time t:
[tex]x(t) = \ x_0 \ + \ v_0 \ t \ + \frac{1}{2} \ a \ t^2[/tex]
[tex]v(t) \ = \ v_0 \ + \ a \ t[/tex]
where [tex]x_0[/tex] is the initial position, [tex]v_0[/tex] the initial speed, and a the acceleration.
Lets take this problem in two parts, part 1 and part 2, of duration [tex]t_1[/tex] and [tex]t_2[/tex] respectively.
first part
For the first part, we know that the player starts from rest, this is, the initial speed is zero, and accelerates uniformly. So, we can use the following equations:
The final speed will be:
[tex]v(t_1) \ = \ v_0 \ + \ a \ t_1[/tex]
[tex]v_{max} = a \ t_1[/tex]
and the distance traveled
[tex]x(t_1) = \ x_0 \ + \ v_0 \ t_1 \ + \frac{1}{2} \ a \ t_1^2[/tex]
[tex]x(t_1) = \frac{1}{2} \ a \ t_1^2 = 10.9 ft[/tex]
so
[tex] a \ t_1^2 = 10.9 ft[/tex]
second part
Now, we know that at maximum speed, the player run a distance [tex]90 ft - 10.9 ft[/tex], so:
[tex]v_{max} * t_2 = 90 ft - 10.9 ft = 79.8 ft[/tex]
All together
Taking the equations
[tex]v_{max} = a \ t_1[/tex]
[tex] a \ t_1^2 = 10.9 ft[/tex]
[tex]v_{max} * t_2 = 79.8 ft[/tex]
and
[tex]t_1 + t_2 = 4.5 s[/tex]
we can take the second equation and make
[tex] a \ t_1^2 = (a \ t_1 )* t_1 = 10.9 ft[/tex]
but looking at the first equation, this is
[tex] v_{max} t_1 = 10.9 ft[/tex]
now, adding the third one
[tex] v_{max} t_1 + v_{max} * t_2 = 10.9 ft + 79.8 ft [/tex]
[tex] v_{max} (t_1 + t_2) = 90.78 ft [/tex]
using the fourth
[tex] v_{max} 4.5 s = 90.78 ft [/tex]
[tex] v_{max} = \frac{90.78 ft}{ 4.5 s} [/tex]
[tex] v_{max} = 20.16 \frac{ft}{s} [/tex]
so, this is the maximum speed.
Now, if this is the speed, then, [tex]t_1[/tex] is...
[tex] v_{max} t_1 = 20.16 \frac{ft}{s} t_1 = 10.9 ft[/tex]
[tex] t_1 = \frac{10.9 ft}{20.16 \frac{ft}{s}} [/tex]
[tex] t_1 = 0.5401 s [/tex]
and this is the time duration of the acceleration
Finally, using
[tex]v_{max} = a \ t_1[/tex]
we found
[tex]a = \frac{v_{max}}{t_1}[/tex]
[tex]a = \frac{20.16 \frac{ft}{s}}{ 0.5401 s}[/tex]
[tex]a = 37.33 \frac{ft}{s^2}[/tex]