Respuesta :

Answer:

 x = 5

Step-by-step explanation:

Simplify x/10

20/40 - x/10=0

simplify 1/2

1/2- x/10=0

Find the Least Common Multiple

The left denominator is :2  

The right denominator is :10

Number of times each prime factor

       appears in the factorization of:

Prime  

Factor   Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

2 1 1 1

5 0 1 1

Product of all  

Prime Factors  2 10 10

Least Common Multiple: 10

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = 5

  Right_M = L.C.M / R_Deno = 1

Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

  L. Mult. • L. Num.         5

  —————————  =   ——

        L.C.M                      10

  R. Mult. • R. Num.        x

  —————————  =   ——

        L.C.M                      10

Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

5 - (x)           5 - x

——— =  —————

  10                10  

5 - x

 ———  = 0  

  10

When a fraction equals zero ...

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the denominator, Tiger multiplys both sides of the equation by the denominator.

 5-x

 ——— • 10 = 0 • 10

 10

Now, on the left hand side, the  10  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :

  5-x  = 0

Solve  :    -x+5 = 0  

Subtract  5  from both sides of the equation :  

                     -x = -5

Multiply both sides of the equation by (-1) :  x = 5

       x = 5

       

ACCESS MORE