Answer:
Velocity of the electron = v = 1.2\times 10^8\ m/s.
Explanation:
Given,
Now total charge on the ring = [tex]Q\ =\ \rho\times 2\pi R[/tex]
Potential energy due to the charged ring to the point on the x-axis is
[tex]P.E.\ =\ \dfrac{KQq_e}{\sqrt{R^2\ +\ x^2}}\\[/tex]
Let v be the velocity of the electron at the center of the ring.
Total kinetic energy of the electron = [tex]\dfrac{1}{2}m_ev^2\\[/tex]
Now, From the conservation of energy,
the total potential energy of the electron at initially is converted to the total kinetic energy of the electron at the center of the ring,
[tex]\therefore P.E.\ =\ K.E.\\\Rightarrow \dfrac{KQ}{\sqrt{R^2\ +\ x^2}}\ =\ \dfrac{1}{2}m_ev^2\\\Rightarrow v\ =\ sqrt{\dfrac{2 KQq_e}{m_e\sqrt{R^2\ +\ x^2}}}\\\Rightarrow v\ =\ \sqrt{\dfrac{2Kq_e\rho \times 2\pi R}{m_e\sqrt{R^2\ +\ x^2}}}\\\Rightarrow v\ =\ \sqrt{\dfrac{2\times 9\times 10^9\times 1.0\times 10^{-6}\times 2\times 3.14\times 0.7\times 1.6\times 10^{-19}}{9\times 10^{-31}\times \sqrt{0.7^2\ +\ 0.5^2}}}\\\Rightarrow v\ =\ 1.2\times 10^8\ m/s.[/tex]
Hence the velocity of the electron on the center of the charged ring is [tex]1.2\times 10^8\ m/s.[/tex]