Respuesta :
Answer:
See explanation
Step-by-step explanation:
You are given the equation of the curve
[tex]y=\dfrac{x}{1+x}[/tex]
Point [tex]P\left(1,\dfrac{1}{2}\right)[/tex] lies on the curve.
Point [tex]Q\left(x,\dfrac{x}{1+x}\right)[/tex] is an arbitrary point on the curve.
The slope of the secant line PQ is
[tex]\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{\frac{x}{1+x}-\frac{1}{2}}{x-1}=\dfrac{\frac{2x-(1+x)}{2(x+1)}}{x-1}=\dfrac{\frac{2x-1-x}{2(x+1)}}{x-1}=\\ \\=\dfrac{\frac{x-1}{2(x+1)}}{x-1}=\dfrac{x-1}{2(x+1)}\cdot \dfrac{1}{x-1}=\dfrac{1}{2(x+1)}\ [\text{When}\ x\neq 1][/tex]
1. If x=0.5, then the slope is
[tex]\dfrac{1}{2(0.5+1)}=\dfrac{1}{3}\approx 0.3333[/tex]
2. If x=0.9, then the slope is
[tex]\dfrac{1}{2(0.9+1)}=\dfrac{1}{3.8}\approx 0.2632[/tex]
3. If x=0.99, then the slope is
[tex]\dfrac{1}{2(0.99+1)}=\dfrac{1}{3.98}\approx 0.2513[/tex]
4. If x=0.999, then the slope is
[tex]\dfrac{1}{2(0.999+1)}=\dfrac{1}{3.998}\approx 0.2501[/tex]
5. If x=1.5, then the slope is
[tex]\dfrac{1}{2(1.5+1)}=\dfrac{1}{5}\approx 0.2[/tex]
6. If x=1.1, then the slope is
[tex]\dfrac{1}{2(1.1+1)}=\dfrac{1}{4.2}\approx 0.2381[/tex]
7. If x=1.01, then the slope is
[tex]\dfrac{1}{2(1.01+1)}=\dfrac{1}{4.02}\approx 0.2488[/tex]
8. If x=1.001, then the slope is
[tex]\dfrac{1}{2(1.001+1)}=\dfrac{1}{4.002}\approx 0.2499[/tex]
Answer:
trust him he is correct you can follow his eplanation
Step-by-step explanation: