Answer:
20 g/L
Explanation:
To know what happens with the concentration, we must calcute the limit of the function where t → ∞. The limit is the value that the function approach when t intend to a value. So:
[tex]\lim_{t \to \infty} C(t) = \lim_{t \to \infty}\frac{20t}{360 + t}[/tex]
Dividing both for "t"
[tex]\lim_{t \to \infty} C(t) = \lim_{t\to \infty} \frac{\frac{1}{t}20t }{\frac{1}{t}(360 + t) }[/tex]
[tex]\lim_{t \to \infty} \frac{20}{\frac{360}{t} + 1 }[/tex]
The limit of 1/t when t intend to infity is 0, which is demonstrated in the graph below, so:
[tex]\lim_{t\to \infty} 20 = 20[/tex]
The concentration will approach 20 g/L.