Simplify. Assume no variable is 0.
#16-23 please
85 points!!!!! This is the jumbo pack!!!!

Step-by-step explanation:
Q16
[tex]( {5x}^{3} {y}^{ - 5} )( {4xy}^{3} )[/tex]
First, we multiply the variable x together:
[tex] {x}^{3} \times x = {x}^{4} [/tex]
and remove brackets:
[tex] {5y}^{ - 5} \times {4x}^{4} \times {y}^{3} [/tex]
Now, we multiply the variable y:
[tex] {y}^{ - 5} \times {y}^{3} = {y}^{ - 2} [/tex]
Hence:
[tex]5 \times 4 {x}^{4} \times {y}^{ - 2} [/tex]
Use the rule
[tex]{x}^{ - y} = \frac{1}{ {x}^{y} } [/tex]
Thus,
[tex]5 \times 4 {x}^{4} \times \frac{1}{ {y}^{2} } [/tex]
Multiply:
[tex] \frac{20 {x}^{4} }{ {y}^{2} } [/tex]
Q17
[tex]( - 2 {b}^{3} c)(4 {b}^{2} {c}^{2} )[/tex]
[tex]- 2 {b}^{3} c\times 4 {b}^{2} {c}^{2} [/tex]
Multiply the variable b together:
[tex] - 2c \times 4 {b}^{5} {c}^{2} [/tex]
Multiply the variable c together:
[tex] - 2 \times 4 {b}^{5} {c}^{3} [/tex]
Multiply.
[tex] - 8 {b}^{5} {c}^{3} [/tex]
Q18:
[tex] \frac{ {a}^{3} {n}^{7} }{a {n}^{4} } [/tex]
Divide the numerator and denominator by a:
[tex] \frac{ {a}^{2} {n}^{7} }{ {n}^{4} } [/tex]
Apply the rule that
[tex] \frac{ {x}^{y} }{ {x}^{z} } = {x}^{y - z} [/tex]
Hence, the equation will be
[tex] {a}^{2} {n}^{7 - 4} [/tex]
which is finally
[tex] {a}^{2} {n}^{3} [/tex]
Q19:
[tex] \frac{ - {y}^{3} {z}^{5} }{ {y}^{2} {z}^{3} } [/tex]
Do the same rule said above:
[tex] - \frac{ {z}^{5} {y}^{3 - 2} }{ {z}^{3} } [/tex]
[tex] - \frac{y {z}^{5} }{ {z}^{3} } [/tex]
Do the rule again:
[tex] - y {z}^{5 - 3} [/tex]
[tex] - y {z}^{2} [/tex]
Q20:
[tex] \frac{ - 7 {x}^{5} {y}^{5} {z}^{4} }{21 {x}^{7} {y}^{5} {z}^{2} } [/tex]
Cancel the common factor of 7:
[tex] - \frac{ {x}^{5} {y}^{5} {z}^{4} }{3 {x}^{7} {y}^{5} {z}^{2} } [/tex]
[tex] - \frac{ {y}^{5} {z}^{4} }{3 {y}^{5} {z}^{2} {x}^{7 - 5} } [/tex]
Thus,
[tex] - \frac{ {y}^{5} {z}^{4} }{3 {y}^{5} {z}^{2} {x}^{2} } [/tex]
Cancel common factor of y^5
[tex] - \frac{ {z}^{4} }{3 {z}^{2} {x}^{2} } [/tex]
[tex] - \frac{ {z}^{4 - 2} }{3 {x}^{2} } [/tex]
[tex] - \frac{ {z}^{2} }{3 {x}^{2} } [/tex]
Q21:
[tex] \frac{9 {a}^{7} {b}^{5} {c}^{5} }{18 {a}^{5} {b}^{9} {c}^{3} } [/tex]
Cancel the common factor which is 9:
[tex] \frac{{a}^{7} {b}^{5} {c}^{5} }{2 {a}^{5} {b}^{9} {c}^{3} } [/tex]
"Move" the variable a up using the rule:
[tex] \frac{{a}^{7 - 5} {b}^{5} {c}^{5} }{2 {b}^{9} {c}^{3} } [/tex]
[tex] \frac{{a}^{2} {b}^{5} {c}^{5} }{2 {b}^{9} {c}^{3} } [/tex]
"Move" the variable b down using the rule:
[tex] \frac{{a}^{2} {c}^{5} }{2 {c}^{3} {b}^{9 - 5} } [/tex]
[tex] \frac{{a}^{2} {c}^{5} }{2 {c}^{3} {b}^{4} } [/tex]
"Move" the variable c up using the rule
[tex] \frac{{a}^{2} {c}^{5 - 3} }{2 {b}^{4} } [/tex]
[tex] \frac{{a}^{2} {c}^{2} }{2 {b}^{4} } [/tex]
Q22:
[tex]( {n}^{5} {)}^{4} [/tex]
Use the rule:
[tex]({x}^{y} {)}^{z} = {x}^{yz} [/tex]
Hence,
[tex] {n}^{5 \times 4} [/tex]
[tex] {n}^{20} [/tex]
Q23:
[tex]( {z}^{3} {)}^{6} [/tex]
Using the same rule above,
[tex] {z}^{3 \times 6} [/tex]
Therefore,
[tex] {z}^{18} [/tex]
Answer:
Q16
First, we multiply the variable x together:
and remove brackets:
Now, we multiply the variable y:
Hence:
Use the rule
Thus,
Multiply:
Q17
Multiply the variable b together:
Multiply the variable c together:
Multiply.
Q18:
Divide the numerator and denominator by a:
Apply the rule that
Hence, the equation will be
which is finally
Q19:
Do the same rule said above:
Do the rule again:
Q20:
Cancel the common factor of 7:
Thus,
Cancel common factor of y^5
Q21:
Cancel the common factor which is 9:
"Move" the variable a up using the rule:
"Move" the variable b down using the rule:
"Move" the variable c up using the rule
Q22:
Use the rule:
Hence,
Q23:
Using the same rule above,
Therefore,
you get your answer.