Respuesta :

Step-by-step explanation:

Q16

[tex]( {5x}^{3} {y}^{ - 5} )( {4xy}^{3} )[/tex]

First, we multiply the variable x together:

[tex] {x}^{3} \times x = {x}^{4} [/tex]

and remove brackets:

[tex] {5y}^{ - 5} \times {4x}^{4} \times {y}^{3} [/tex]

Now, we multiply the variable y:

[tex] {y}^{ - 5} \times {y}^{3} = {y}^{ - 2} [/tex]

Hence:

[tex]5 \times 4 {x}^{4} \times {y}^{ - 2} [/tex]

Use the rule

[tex]{x}^{ - y} = \frac{1}{ {x}^{y} } [/tex]

Thus,

[tex]5 \times 4 {x}^{4} \times \frac{1}{ {y}^{2} } [/tex]

Multiply:

[tex] \frac{20 {x}^{4} }{ {y}^{2} } [/tex]

Q17

[tex]( - 2 {b}^{3} c)(4 {b}^{2} {c}^{2} )[/tex]

[tex]- 2 {b}^{3} c\times 4 {b}^{2} {c}^{2} [/tex]

Multiply the variable b together:

[tex] - 2c \times 4 {b}^{5} {c}^{2} [/tex]

Multiply the variable c together:

[tex] - 2 \times 4 {b}^{5} {c}^{3} [/tex]

Multiply.

[tex] - 8 {b}^{5} {c}^{3} [/tex]

Q18:

[tex] \frac{ {a}^{3} {n}^{7} }{a {n}^{4} } [/tex]

Divide the numerator and denominator by a:

[tex] \frac{ {a}^{2} {n}^{7} }{ {n}^{4} } [/tex]

Apply the rule that

[tex] \frac{ {x}^{y} }{ {x}^{z} } = {x}^{y - z} [/tex]

Hence, the equation will be

[tex] {a}^{2} {n}^{7 - 4} [/tex]

which is finally

[tex] {a}^{2} {n}^{3} [/tex]

Q19:

[tex] \frac{ - {y}^{3} {z}^{5} }{ {y}^{2} {z}^{3} } [/tex]

Do the same rule said above:

[tex] - \frac{ {z}^{5} {y}^{3 - 2} }{ {z}^{3} } [/tex]

[tex] - \frac{y {z}^{5} }{ {z}^{3} } [/tex]

Do the rule again:

[tex] - y {z}^{5 - 3} [/tex]

[tex] - y {z}^{2} [/tex]

Q20:

[tex] \frac{ - 7 {x}^{5} {y}^{5} {z}^{4} }{21 {x}^{7} {y}^{5} {z}^{2} } [/tex]

Cancel the common factor of 7:

[tex] - \frac{ {x}^{5} {y}^{5} {z}^{4} }{3 {x}^{7} {y}^{5} {z}^{2} } [/tex]

[tex] - \frac{ {y}^{5} {z}^{4} }{3 {y}^{5} {z}^{2} {x}^{7 - 5} } [/tex]

Thus,

[tex] - \frac{ {y}^{5} {z}^{4} }{3 {y}^{5} {z}^{2} {x}^{2} } [/tex]

Cancel common factor of y^5

[tex] - \frac{ {z}^{4} }{3 {z}^{2} {x}^{2} } [/tex]

[tex] - \frac{ {z}^{4 - 2} }{3 {x}^{2} } [/tex]

[tex] - \frac{ {z}^{2} }{3 {x}^{2} } [/tex]

Q21:

[tex] \frac{9 {a}^{7} {b}^{5} {c}^{5} }{18 {a}^{5} {b}^{9} {c}^{3} } [/tex]

Cancel the common factor which is 9:

[tex] \frac{{a}^{7} {b}^{5} {c}^{5} }{2 {a}^{5} {b}^{9} {c}^{3} } [/tex]

"Move" the variable a up using the rule:

[tex] \frac{{a}^{7 - 5} {b}^{5} {c}^{5} }{2 {b}^{9} {c}^{3} } [/tex]

[tex] \frac{{a}^{2} {b}^{5} {c}^{5} }{2 {b}^{9} {c}^{3} } [/tex]

"Move" the variable b down using the rule:

[tex] \frac{{a}^{2} {c}^{5} }{2 {c}^{3} {b}^{9 - 5} } [/tex]

[tex] \frac{{a}^{2} {c}^{5} }{2 {c}^{3} {b}^{4} } [/tex]

"Move" the variable c up using the rule

[tex] \frac{{a}^{2} {c}^{5 - 3} }{2 {b}^{4} } [/tex]

[tex] \frac{{a}^{2} {c}^{2} }{2 {b}^{4} } [/tex]

Q22:

[tex]( {n}^{5} {)}^{4} [/tex]

Use the rule:

[tex]({x}^{y} {)}^{z} = {x}^{yz} [/tex]

Hence,

[tex] {n}^{5 \times 4} [/tex]

[tex] {n}^{20} [/tex]

Q23:

[tex]( {z}^{3} {)}^{6} [/tex]

Using the same rule above,

[tex] {z}^{3 \times 6} [/tex]

Therefore,

[tex] {z}^{18} [/tex]

Answer:

Q16

First, we multiply the variable x together:

and remove brackets:

Now, we multiply the variable y:

Hence:

Use the rule

Thus,

Multiply:

Q17

Multiply the variable b together:

Multiply the variable c together:

Multiply.

Q18:

Divide the numerator and denominator by a:

Apply the rule that

Hence, the equation will be

which is finally

Q19:

Do the same rule said above:

Do the rule again:

Q20:

Cancel the common factor of 7:

Thus,

Cancel common factor of y^5

Q21:

Cancel the common factor which is 9:

"Move" the variable a up using the rule:

"Move" the variable b down using the rule:

"Move" the variable c up using the rule

Q22:

Use the rule:

Hence,

Q23:

Using the same rule above,

Therefore,

 you get your answer.

ACCESS MORE
EDU ACCESS