Two linear edges of the rectangular are parallel if they do not meet and have the same direction vectors
The correct options for the edges parallel to [tex]\overline{AH}[/tex] are [tex]\mathbf{\overline{BD}}[/tex] and [tex]\mathbf{\overline{MK}}[/tex]
The reason for the above selection is as follows:
The edges of the given rectangular prism are;
Horizontal edges in the x-direction: [tex]\overline{AH}[/tex], [tex]\overline{PY}[/tex], [tex]\overline{BD}[/tex], [tex]\overline{MK}[/tex]
Horizontal edges in the z-direction: [tex]\overline{HK}[/tex], [tex]\overline{BP}[/tex], [tex]\overline{DY}[/tex], [tex]\overline{AM}[/tex]
Vertical edges: [tex]\overline{AP}[/tex], [tex]\overline{BM}[/tex], [tex]\overline{DK}[/tex], [tex]\overline{HY}[/tex]
The required information:
The names of the edges that are parallel to [tex]\overline{AH}[/tex]
Strategy:
Two edges are parallel if they are oriented in the same axial direction or have the same direction vectors
Solution:
The edged that are in the same axial direction as [tex]\overline{AH}[/tex] are [tex]\overline{PY}[/tex], [tex]\overline{BD}[/tex] and [tex]\overline{MK}[/tex]
Therefore, the correct options from the options given for the edges of the rectangular prism parallel to [tex]\overline{AH}[/tex] are;
[tex]\mathbf{\overline{BD}}[/tex] and [tex]\mathbf{\overline{MK}}[/tex]
Learn more about 3D coordinate geometry here:
https://brainly.com/question/10168695
https://brainly.com/question/15909983