Answer:
Explanation:
The work made by the force its equal to the change of mechanical energy
[tex]Work = \Delta E_m[/tex]
The mechanical energy is given by:
[tex]E_m = E_k + E_p[/tex]
where [tex]E_k[/tex] is the kinetic energy and [tex]E_p[/tex] the potential energy.
We know that, the kinetic energy is
[tex]E_k = \frac{1}{2} \ m \ v^2[/tex]
and the potential energy
[tex]E_p =m \ g \ h[/tex]
We can put h=0 at Earth's surface, taking this in consideration, the initial Energy is:
[tex]E_{m_0} = \frac{1}{2} \ m \ (50 \frac{m}{s})^2 + m \ 9.81 \frac{m}{s^2} \ 5 \ m[/tex]
[tex]E_{m_0} = \frac{1}{2} \ m \ 2,500 \frac{m^2}{s^2} + m 49.05 \frac{m^2}{s^2} [/tex]
[tex]E_{m_0} = \ m \ 1,250 \frac{m^2}{s^2} + m \ 49.05 \frac{m^2}{s^2} [/tex]
[tex]E_{m_0} = \ m \ 1,299.05 \frac{m^2}{s^2} [/tex]
the final Energy is:
[tex]E_{m_f} = \frac{1}{2} \ m \ (100 \frac{m}{s})^2 + m \ 9.81 \frac{m}{s^2} \ 20 \ m[/tex]
[tex]E_{m_f} = \frac{1}{2} \ m \ 10,000 \frac{m^2}{s^2} + m 196.2 \frac{m^2}{s^2} [/tex]
[tex]E_{m_f} = \ m \ 5,000 \frac{m^2}{s^2} + m \ 196.2 \frac{m^2}{s^2} [/tex]
[tex]E_{m_f} = \ m \ 5,196.2 \frac{m^2}{s^2} [/tex]
The work will be:
[tex]Work = \Delta E_m[/tex]
[tex]Work = \ m \ 5,196.2 \frac{m^2}{s^2} - \ m \ 1,299.05 \frac{m^2}{s^2} [/tex]
[tex]Work = \ m \ 3,897.15 \frac{J}{kg} [/tex]
As we don't know the mass, we can take the work over mass:
[tex]\frac{Work}{mass}= \ 3.897 \frac{kJ}{kg} [/tex]