Respuesta :

Answer:

n = 9

Step-by-step explanation:

Let's first prove that for any constants k > 0, [tex]n\geq 1[/tex]

[tex]\lim_{x\to \infty}\frac{\log x^k}{x^n}=0[/tex]

The derivative

[tex](\log (x^k))'=\frac{kx^{k-1}}{x^k}=\frac{k}{x}[/tex]

and the derivative [tex](x^n)' = nx^{n-1}[/tex]

Now, applying L'Hôpital's rule we find that

[tex]\lim_{x\to \infty}\frac{\log x^k}{x}=\lim_{x\to \infty}\frac{k}{nx^n}=0[/tex]

Now, let f be the function

[tex]f(x)=x^8log(x^3)+x^6log(x^5)[/tex]

It is easy to see that  f(x) is [tex]O(x^n)[/tex] only if [tex]n\geq 9[/tex]

If [tex]n\geq 9[/tex]  

[tex]\frac{f(x)}{x^n}=\frac{x^8log(x^3)+x^6log(x^5)}{x^n}=\frac{log(x^3)}{x^{n-8}}+\frac{log(x^5)}{x^{n-6}}[/tex]

but both n-8 and n-6 are greater than one, so

[tex]\lim_{x \to \infty}\frac{f(x)}{x^n}=0[/tex]

and f is [tex]O(x^n)[/tex]

On the other hand, if [tex]n \leq 8[/tex] then  

[tex]\frac{f(x)}{x^n}=x^{8-n}log(x^3)+x^{6-n}log(x^5)[/tex]

but 8-n is greater or equal than one, so

[tex]\lim_{x \to \infty}\frac{f(x)}{x^n}=\infty[/tex]

and so f(x) in not [tex]O(x^n)[/tex]

ACCESS MORE