Answer:
Explanation:
Given
velocity of mug with which it leaves the bar is 1.7 m/s
Also
height of bar=1 m
Considering motion in vertical direction
[tex]s=u_yt+\frac{gt^2}{2}[/tex]
here [tex]u_y=0[/tex]
[tex]1=0+\frac{9.81\times t^2}{2}[/tex]
[tex]t=\sqrt{\frac{2}{9.81}}[/tex]
t=0.451 s
so horizontal distance traveled is
[tex]R_x=ut+\frac{at^2}{2}[/tex]
here a=0
[tex]R_x=1.7\times 0.451=0.766 m/s[/tex]
speed of mug will be combination of horizontal and vertical velocity
[tex]v_y=u+gt[/tex]
[tex]v_y=0+9.81\times 0.451=4.42 m/s[/tex]
[tex]v_x=1.7 m/s[/tex]
thus [tex]v_{net}=\sqrt{v_x^2+v_y^2}[/tex]
[tex]v_{net}=\sqrt{4.42^2+1.7^2}[/tex]
[tex]v_{net}=\sqrt{22.46}=4.74 m/s[/tex]
for direction
[tex]tan\theta =\frac{4.42}{1.7}=2.6[/tex]
[tex]\theta =69[/tex]
[tex]\theta [/tex]is with x axis in clockwise sense