contestada

Now suppose you were using Plutonium 239 in a nuclear fission reactor. How long would it take 20 g of radioactive Plutonium 239 decay down to a safe 2.5 g? SHOW WORK.

Respuesta :

Answer:

It will take [tex]7.23 \ 10^4[/tex] years.

Explanation:

Plutonium 239 has a half life of [tex]2.41 \ 10^4[/tex] years.

We know, for radioactive decay, that the quantity of radioactive material N at time t can be obtained with the equation

[tex]N(t) = N_0 \  (\frac{1}{2})^{\frac{t}{t_{\frac{1}{2}}}}[/tex]

where [tex]N_0[/tex] is the initial quantity of radioactive material and [tex]t_{\frac{1}{2}}[/tex] is the half life of the material.

Taking the values of our problem:

[tex]N(t') = 2.5 \ g = 20 \ g \*  (\frac{1}{2})^{\frac{t'}{t_{\frac{1}{2}}}}[/tex]

[tex]\frac{2.5 \ g}{20 \ g} =  \  (\frac{1}{2})^{\frac{t'}{t_{\frac{1}{2}}}}[/tex]

[tex] log( 0.125) =    log((\frac{1}{2})^{\frac{t'}{t_{\frac{1}{2}}}} ) [/tex]

[tex] log( 0.125) =    {\frac{t'}{t_{\frac{1}{2}}}} * log((\frac{1}{2}) ) [/tex]

[tex] \frac{log( 0.125)}{log(\frac{1}{2})} =    \frac{t'}{t_{\frac{1}{2}}}} [/tex]

[tex] t_{ \frac{1}{2} }  \frac{log( 0.125)}{log(\frac{1}{2})} =    t'   [/tex]

[tex] 2.41 \ 10^4 \years\ * 3 =  t'   [/tex]

[tex] 7.23 \ 10^4 \years\ =  t'   [/tex]

ACCESS MORE