Answer:
It will take [tex]7.23 \ 10^4[/tex] years.
Explanation:
Plutonium 239 has a half life of [tex]2.41 \ 10^4[/tex] years.
We know, for radioactive decay, that the quantity of radioactive material N at time t can be obtained with the equation
[tex]N(t) = N_0 \ (\frac{1}{2})^{\frac{t}{t_{\frac{1}{2}}}}[/tex]
where [tex]N_0[/tex] is the initial quantity of radioactive material and [tex]t_{\frac{1}{2}}[/tex] is the half life of the material.
Taking the values of our problem:
[tex]N(t') = 2.5 \ g = 20 \ g \* (\frac{1}{2})^{\frac{t'}{t_{\frac{1}{2}}}}[/tex]
[tex]\frac{2.5 \ g}{20 \ g} = \ (\frac{1}{2})^{\frac{t'}{t_{\frac{1}{2}}}}[/tex]
[tex] log( 0.125) = log((\frac{1}{2})^{\frac{t'}{t_{\frac{1}{2}}}} ) [/tex]
[tex] log( 0.125) = {\frac{t'}{t_{\frac{1}{2}}}} * log((\frac{1}{2}) ) [/tex]
[tex] \frac{log( 0.125)}{log(\frac{1}{2})} = \frac{t'}{t_{\frac{1}{2}}}} [/tex]
[tex] t_{ \frac{1}{2} } \frac{log( 0.125)}{log(\frac{1}{2})} = t' [/tex]
[tex] 2.41 \ 10^4 \years\ * 3 = t' [/tex]
[tex] 7.23 \ 10^4 \years\ = t' [/tex]