Respuesta :
Answer:
friction factor is 0.01819
average speed v = 1.69 m/s
Reynolds number = 98786.7
and flow is turbulent
Explanation:
given data
diameter d = 0.052 m
roughness ε=0.0015 mm
length l = 200 m
ΔP = 100 kPa
to find out
friction factor f, Reynolds number Re and average speed v
solution
we solve this by hit and try assume flow is turbulent
so we can say pipe flow
[tex]\frac{ pressure drop }{\rho g} = \frac{flv^2}{2gd}[/tex] ...............1
here f is friction factor and l is length and d is diameter and ρ is density
so
[tex]\frac{100*10^3}{10^3 g} = \frac{f*200*v^2}{2*g*0.052}[/tex]
f v² = 0.052 ................2
we know Reynolds number = [tex]\frac{\rho v d}{u}[/tex]
here u is viscosity of water that is 8.9 × [tex]10^{-4}[/tex]
Reynolds number = [tex]\frac{10^3 v 0.052}{8.9*10^{-4}}[/tex]
put here v from equation 2
Reynolds number = [tex]\frac{10^3 v 0.052}{8.9*10^{-4}}[/tex] × [tex]\sqrt{\frac{0.052}{f} }[/tex]
Reynolds number = [tex]\frac{13323.398}{\sqrt{f} }[/tex] .................3
we know that 1/√f is
[tex]\frac{1}{\sqrt{f}} = -2 log( \frac{2.51}{Re\sqrt{f} } + \frac{E}{3.7d})[/tex]
[tex]\frac{1}{\sqrt{f}} = -2 log( \frac{2.51}{13323.398 } + \frac{0.0015*10^{-3}}{3.7*0.052})[/tex]
[tex]\frac{1}{\sqrt{f}} = 7.41466[/tex]
f = 0.01819
friction factor is 0.01819
and from equation 2
f v² = 0.052
0.01819 v² = 0.052
average speed v = 1.69 m/s
and from equation 3
Reynolds number = [tex]\frac{13323.398}{\sqrt{f} }[/tex]
Reynolds number = [tex]\frac{13323.398}{\sqrt{0.01819} }[/tex]
Reynolds number = 98786.7
so flow is turbulent