Respuesta :
Answer: 16 m
Explanation:
Since this situation is about constanta acceleration, we can use the following equations:
[tex]V=V_{o} +a.t[/tex] (1)
[tex]V^{2}={V_{o}}^{2} +2ad[/tex] (2)
Where:
[tex]V[/tex] is the bike rider's final velocity
[tex]V_{o}=0[/tex] is the bike rider's initial velocity
[tex]t=4 s[/tex] is the time at which we need to find the bike rider's distance
[tex]a=2 \frac{m}{s^{2}}[/tex] is the constant acceleration
[tex]d[/tex] is the bike rider's traveled distance
From (1) we can find [tex]V[/tex]:
[tex]V=0 +a.t[/tex] (3)
[tex]V=(2 \frac{m}{s^{2}})(4 s)[/tex] (4)
[tex]V=8\frac{m}{s}[/tex] (5)
Now, we can substitute (5) in (2) and find the traveled distance [tex]d[/tex]:
[tex]V^{2}=0 +2ad[/tex] (6)
[tex]d=\frac{V^{2}}{2a}[/tex] (7)
Finally:
[tex]d=16 m[/tex]
Answer:
7 m
Explanation:
The bike rider starts from rest. Initial velocity u = 0
Acceleration a = 2.0 m/s²
Total time taken = 10 s
Use the second equation of motion
s = ut + 0.5 at²
u = 0
s = 0.5at²
[tex]s_4-s_3= 0.5a (t_4^2-t_3^2)[/tex]
Substitute the values
[tex]s_4-s_3= 0.5\times 2.0\times (4^2-3^2) = 16-9 = 7 m [/tex]