3. A bike rider accelerates uniformly at 2.0 m/s2 for 10.0
s. If the rider starts from rest, calculate the distance
traveled in the fourth second.
(i.e. between t = 3 s and t = 4 s).

Respuesta :

Answer: 16 m

Explanation:

Since this situation is about constanta acceleration, we can use the following equations:

 [tex]V=V_{o} +a.t[/tex]  (1)

[tex]V^{2}={V_{o}}^{2} +2ad[/tex] (2)

Where:

[tex]V[/tex] is the bike rider's final velocity

[tex]V_{o}=0[/tex] is the bike rider's initial velocity

[tex]t=4 s[/tex] is the time at which we need to find the bike rider's distance

[tex]a=2 \frac{m}{s^{2}}[/tex] is the constant acceleration

[tex]d[/tex] is the bike rider's traveled distance

From (1) we can find [tex]V[/tex]:

 [tex]V=0 +a.t[/tex]  (3)

 [tex]V=(2 \frac{m}{s^{2}})(4 s)[/tex]  (4)

 [tex]V=8\frac{m}{s}[/tex]  (5)

Now, we can substitute (5) in (2) and find the traveled distance [tex]d[/tex]:

[tex]V^{2}=0 +2ad[/tex] (6)

[tex]d=\frac{V^{2}}{2a}[/tex] (7)

Finally:

[tex]d=16 m[/tex]

Answer:

7 m

Explanation:

The bike rider starts from rest. Initial velocity u = 0

Acceleration a = 2.0 m/s²

Total time taken = 10 s

Use the second equation of motion

s = ut + 0.5 at²

u = 0

s = 0.5at²

[tex]s_4-s_3= 0.5a (t_4^2-t_3^2)[/tex]

Substitute the values

[tex]s_4-s_3= 0.5\times 2.0\times (4^2-3^2) = 16-9 = 7 m [/tex]

ACCESS MORE