Answer:
Step-by-step explanation:
[tex]2\sqrt{x+2} -\sqrt{x-3} =\sqrt{x+9 } \\squaring ~both~sides\\4(x+2)+(x-3)-4\sqrt{(x+2)(x-3)} =x+9 \\4x+8+x-3-x-9=4\sqrt{x^2-x-6} \\4x-4=4\sqrt{x^2-x-6} \\or ~\sqrt{x^2-x-6} =x-1\\again ~squaring\\x^2-x-6=x^2-2x+1\\2x-x=1+6\\x=7[/tex]