Respuesta :

Answer:

76

Step-by-step explanation:

Applying the formula to calculate the discriminant Δ=b2−4(a)(c)

Δ=b2-4(a)(c) with : a=3, b=−10, c=2

Δ=(−10)2−4⋅(3)⋅(2) = 100−24 = 76

The discriminant of the polynomial is equal to 76.

Answer:

Option A.

Step-by-step explanation:

The given equation is

[tex]3x^2-10x=-2[/tex]

It can be rewritten as

[tex]3x^2-10x+2=0[/tex]

If a quadratic equation is [tex]ax^2+bx+c=0[/tex], then discriminant is [tex]D=b^2-4ac[/tex].

In the given equation a=3, b=-10 and c=2. So, the value of discriminant is

[tex]D=(-10)^2-4(3)(2)[/tex]

[tex]D=100-24[/tex]

[tex]D=76[/tex]

Therefore, the correct option is A.

ACCESS MORE