Respuesta :
Answer:
E = (0, 0.299) N
Explanation:
Given,
- Charge [tex]q_1\ =\ 8.0\ nC[/tex]
- Charge [tex]q_2\ =\ 6.0\ nC[/tex]
- Distance of the first charge from the origin = (16m, 0)
- Distance of the second charge from the origin = (-9, 0)
- Point where the electric field required = (0, 12m)
Let [tex]\theta_1\ and\ theta_2[/tex] be the angle of the electric fields by first and second charge at the point A.
[tex]\therefore sin\theta_1\ =\ \dfrac{12}{20}\\\Rightarrow \theta_1\ =\ sin^{-1}\left (\dfrac{12}{20}\ \right )\\\Rightarrow \theta_1\ =\ 36.87^o\\\\\therefore sin\theta_1\ =\ \dfrac{12}{9}\\\Rightarrow \theta_1\ =\ sin^{-1}\left (\dfrac{12}{9}\ \right )\\\Rightarrow \theta_1\ =\ 53.13^o\\[/tex]
Electric field by charge [tex]q_1[/tex] at point A,
[tex]F_1\ =\ \dfrac{kq_1}{r_1^2}\\\Rightarrow F_1\ =\ \dfrac{9\times 10^9\times 8\times 10^{-9}}{20^2}\\\Rightarrow F_1\ =\ 0.18\ N/C[/tex]
Electric field by the charge [tex]q_2[/tex] at point A,
[tex]F_1\ =\ \dfrac{kq_1}{r_1^2}\\\Rightarrow F_1\ =\ \dfrac{9\times 10^9\times 6.0\times 10^{-9}}{16^2}\\\Rightarrow F_1\ =\ 0.24\ N/C[/tex]
Now,
Net electric field in horizontal direction at point A[tex]F_x\ =\ F_{1x}\ +\ F_{2x}\\\Rightarrow F_x\ =\ F_1cos\theta_1\ +\ F_2cos\theta_2\\\Rightarrow F_x\ =\ 0.18\times( -cos36.87^o)\ +\ 0.24\times cos53.13^o\\\Rightarrow F_x\ =\ -0.144\ +\ 0.144\ N/C\\\Rightarrow F_x\ =\ 0\ N/C[/tex]
Net electric field in vertical direction at point A.
[tex]F_y\ =\ F_{1y}\ +\ F_{2y}\\\Rightarrow F_y\ =\ F_1sin\theta_1\ +\ F_2sin\theta_2\\\Rightarrow F_y\ =\ 0.18\times sin36.87^o\ +\ 0.24\times sin53.13^o\\\Rightarrow F_y\ =\ 0.180\ +\ 0.192\\\Rightarrow F_y\ =\ 0.299\ N/C[/tex]
Hence, the net electric field at point A,
[tex]F\ =\ ( 0, 0.299 )\ N/C.[/tex]