To aid in the prevention of tooth decay, it is recommended that drinking water contain 0.900 ppm fluoride, F−. How many grams of F− must be added to a cylindrical water reservoir having a diameter of 8.34 × 102 m and a depth of 74.50 mm? mass: g F− How many grams of sodium fluoride, NaF, contain this amount of fluoride? mass:

Respuesta :

Explanation:

The given data is as follows.

           Weight of [tex]F^{-}[/tex] = 0.9 ppm = 0.9 mg/kg

           Diameter = [tex]8.34 \times 10^{2} m[/tex]

           radius = [tex]\frac{Diameter}{2}[/tex] = [tex]\frac{8.34 \times 10^{2} m}{2}[/tex]

                       = [tex]4.17 \times 10^{2} m[/tex]

           height = 74.50 mm = 0.0745 m   (as 1 mm = 0.001 m)

Hence, calculate the volume as follows.

                 Volume of tank = [tex]\pi \times r^{2} \times h[/tex]

                                            = [tex]3.14 \times (4.17 \times 10^{2} m)^{2} \times 0.0745 m[/tex]

                                             = [tex]4.067 \times 10^{2} m^{3}[/tex]

                                             = [tex]4067 \times 10^{2} l[/tex]   (as [tex]1 m^{3}[/tex] = 1000 L)

Therefore, weight of [tex]F^{-}[/tex] for [tex]4067 \times 10^{2} kg[/tex] water                                          

                           =  [tex]0.9 mg/l \times 4067 \times 10^{2} l[/tex]

                           = [tex]3.66 \times 10^{2} mg[/tex]

                           = [tex]\frac{3.66 \times 10^{2} mg}{1000} g[/tex]

                           = 0.366 g

Hence, moles of [tex]F^{-}[/tex] will be calculated as follows.

                      No. of moles = [tex]\frac{mass}{\text{molar mass}}[/tex]

                                             = [tex]\frac{0.366 g}{19 g/mol}[/tex]

                                             = 0.0192 mol

Moles of [tex]F^{-}[/tex] = moles of NaF

Therefore, weight of NaF = Moles × Molecular weight

                                           = [tex]0.0912 mol \times 42 g/mol[/tex]

                                           = 3.83 g

Thus, we can conclude that weight of NaF is 3.83 g.

A cylindrical water reservoir having a diameter of 8.34 × 10² m and a depth of 74.50 mm requires 7.25 g of NaF to contain 0.900 ppm F⁻.

A cylindrical water reservoir has a diameter (d) of 8.34 × 10² m and a depth of 74.50 mm (h). We can calculate the volume (V) of the reservoir using the following expression.

[tex]V = h \times \pi \times (\frac{d}{2} )^{2} = (8.34 \times 10^{2}m ) \times \pi \times (\frac{74.50 \times 10^{-3}m }{2} )^{2} = 3.64 m^{3}[/tex]

We can convert 3.64 m³ to L using the conversion factor 1 m³ = 1000 L.

[tex]3.64 m^{3} \times \frac{1000L}{m^{3} } = 3.64 \times 10^{3} L[/tex]

The required concentration of F⁻ is 0.900 ppm, that is, 0.900 mg of F⁻ per liter of water. The mass of F⁻ in 3.64 × 10³ L of water is:

[tex]3.64 \times 10^{3} L \times \frac{0.900mgF^{-} }{L} = 3.28 \times 10^{3} mgF^{-} = 3.28 gF^{-}[/tex]

The mass ratio of F⁻ to NaF is 19.00:41.99. The mass of NaF that contains 3.28 g of F⁻ is:

[tex]3.28 g F^{-} \times \frac{41.99gNaF}{19.00gF^{-} } = 7.25gNaF[/tex]

A cylindrical water reservoir having a diameter of 8.34 × 10² m and a depth of 74.50 mm requires 7.25 g of NaF to contain 0.900 ppm F⁻.

Learn more: https://brainly.com/question/17837814

ACCESS MORE