Respuesta :

Answer:

Step-by-step explanation:do idk

The solution to the quadratic equation [tex](2 b+3)^{2}=12[/tex]  is [tex] \bold{4 b^{2}+12 b-3=0}[/tex]

Solution:

Using the square of summation algebraic expansion formula for polynomials,

[tex](x+y)^{2}=x^{2}+y^{2}+2 x y[/tex]

Applying the formula on [tex](2 b+3)^{2}[/tex]

Here [tex]x = 2b\ and\ y = 3[/tex]

Hence [tex](2 b+3)^{2}[/tex] can be written as [tex](2 b)^{2}+(3)^{2}+(2 \times 2 b \times 3)=12[/tex]

On simplification,

[tex]\begin{array}{c}{4 b^{2}+9+(2 \times 6 b)=12} \\ {4 b^{2}+9+12 b=12}\end{array}[/tex]

On moving 12 from right hand side to left hand side, it becomes negative (-12)

[tex]4 b^{2}+9+12 b-12=0[/tex]

Rearranging the terms,  [tex]4 b^{2}+12 b+9-12 = 0[/tex]

Subtract 9 from -12, we get   [tex]4 b^{2}+12 b-3 = 0[/tex]

ACCESS MORE
EDU ACCESS