Respuesta :
The solution to the quadratic equation [tex](2 b+3)^{2}=12[/tex] is [tex] \bold{4 b^{2}+12 b-3=0}[/tex]
Solution:
Using the square of summation algebraic expansion formula for polynomials,
[tex](x+y)^{2}=x^{2}+y^{2}+2 x y[/tex]
Applying the formula on [tex](2 b+3)^{2}[/tex]
Here [tex]x = 2b\ and\ y = 3[/tex]
Hence [tex](2 b+3)^{2}[/tex] can be written as [tex](2 b)^{2}+(3)^{2}+(2 \times 2 b \times 3)=12[/tex]
On simplification,
[tex]\begin{array}{c}{4 b^{2}+9+(2 \times 6 b)=12} \\ {4 b^{2}+9+12 b=12}\end{array}[/tex]
On moving 12 from right hand side to left hand side, it becomes negative (-12)
[tex]4 b^{2}+9+12 b-12=0[/tex]
Rearranging the terms, [tex]4 b^{2}+12 b+9-12 = 0[/tex]
Subtract 9 from -12, we get [tex]4 b^{2}+12 b-3 = 0[/tex]