Respuesta :
Answer:
8 cm and 15 cm.
Step-by-step explanation:
Let x and y represent length of each leg of right triangle.
We have been given that the perimeter of a right triangle is 40 cm, and its hypotenuse measures 17 cm.
We can represent this information in a system of equations as:
[tex]x+y+17=40...(1)[/tex]
[tex]x^2+y^2=17^2...(2)[/tex]
From equation (1), we will get:
[tex]x+y+17-17=40-17[/tex]
[tex]x+y=23[/tex]
[tex]x=23-y[/tex]
Substitute this value in equation (2):
[tex](23-y)^2+y^2=17^2[/tex]
[tex]529-46y+2y^2=289[/tex]
[tex]2y^2-46y+529=289[/tex]
[tex]2y^2-46y+240=0[/tex]
[tex]y^2-23y+120=0[/tex]
[tex]y^2-15y-8y+120=0[/tex]
[tex]y(y-15)-8(y-15)=0[/tex]
[tex](y-15)(y-8)=0[/tex]
[tex]y=15\text{ (or) }y=8[/tex]
Therefore, the length of the legs of the hypotenuse would be 8 cm and 15 feet.