Answer:
Final speed is: [tex]v_f = 5.89\cdot 10^{13}\frac{m}{s}[/tex].
Explanation:
We need to remember the Work-energy theorem which states, in mathematical terms:
[tex]W_{net}=K_f-K_0[/tex]
Where [tex]W_{net}[/tex] is the net work done, [tex]K_f[/tex] final kinetic energy and [tex]K_0[/tex] initial kinetic energy.
Means that the work done will be equal to the change of Kinetic energy.
If the charge of the electron is [tex]e=-1.6\cdot 10^{-19} C[/tex] and the potential difference [tex]V=335V[/tex], then [tex]W_{net}=eV[/tex].
If the mass of the electron is [tex]m=9.1\cdot 10^{-31} kg[/tex],
[tex]K_f=mv_f[/tex]
[tex]K_0=mv_i=0[/tex]
We have: [tex]W_{net}=K_f-K_0=K_f[/tex] ⇒ [tex]eV=mv_f[/tex]
⇒ [tex]v_f = \frac{eV}{m}[/tex]
∴ [tex]v_f = 5.89\cdot 10^{13}\frac{m}{s}[/tex]