Suppose a diode consists of a cylindrical cathode with a radius of 6.200�10?2cm , mounted coaxially within a cylindrical anode with a radius of 0.5580cm . The potential difference between the anode and cathode is 335V . An electron leaves the surface of the cathode with zero initial speed (vinitial=0). Find its speed vfinal when it strikes the anode.

Respuesta :

Answer:

Final speed is: [tex]v_f = 5.89\cdot 10^{13}\frac{m}{s}[/tex].

Explanation:

We need to remember the Work-energy theorem which states, in mathematical terms:

[tex]W_{net}=K_f-K_0[/tex]

Where [tex]W_{net}[/tex] is the net work done, [tex]K_f[/tex] final kinetic energy  and [tex]K_0[/tex] initial kinetic energy.

Means that the work done will be equal to the change of Kinetic energy.

If the charge of the electron is [tex]e=-1.6\cdot  10^{-19} C[/tex] and the potential difference [tex]V=335V[/tex], then [tex]W_{net}=eV[/tex].

If the mass of the electron is [tex]m=9.1\cdot 10^{-31} kg[/tex],

[tex]K_f=mv_f[/tex]

[tex]K_0=mv_i=0[/tex]

We have: [tex]W_{net}=K_f-K_0=K_f[/tex] ⇒ [tex]eV=mv_f[/tex]

⇒ [tex]v_f = \frac{eV}{m}[/tex]

∴ [tex]v_f = 5.89\cdot 10^{13}\frac{m}{s}[/tex]

ACCESS MORE