Respuesta :
The electric field intensity as a function of the distance [tex]x[/tex] from the center of the ring is given by:
[tex]E(x) = \dfrac{Qx}{4\pi\varepsilon_0 (x^2 + a^2)^{3/2}}.[/tex]
Taking the derivative of [tex]E[/tex] with respect to [tex]x[/tex], we get:
[tex]\dfrac{\textrm{d}E}{\textrm{d}x} = \dfrac{Q}{4\pi\varepsilon_0}\dfrac{\textrm{d}}{\textrm{d}x}\left[\dfrac{x}{(x^2 + a^2)^{3/2}}\right].[/tex]
We will now use the quotient rule:
[tex]\dfrac{\textrm{d}}{\textrm{d}x}\left[\dfrac{x}{(x^2 + a^2)^{3/2}}\right] = \dfrac{\dfrac{\textrm{d}x}{\textrm{d}x}(x^2+a^2)^{3/2} - x\dfrac{\textrm{d}}{\textrm{d}x}\left[(x^2+a^2)^{3/2}\right]}{\left[(x^2+a^2)^{3/2}\right]^2}.[/tex]
We now use the chain and power rules to get:
[tex]\dfrac{\textrm{d}}{\textrm{d}x}\left[(x^2+a^2)^{3/2}\right] = \dfrac{3}{2}(x^2+a^2)^{1/2}\dfrac{\textrm{d}}{\textrm{d}x}(x^2 + a^2) = \dfrac{3}{2}\sqrt{x^2 + a^2}2x = 3x\sqrt{x^2 + a^2}.[/tex]
And also:
[tex]\dfrac{\textrm{d}x}{\textrm{d}x} = 1.[/tex]
The derivative is then:
[tex]\dfrac{\textrm{d}E}{\textrm{d}x} = \dfrac{Q}{4\pi\varepsilon_0}\dfrac{(x^2+a^2)^{3/2} - 3x^2\sqrt{x^2 + a^2}}{(x^2+a^2)^3}.[/tex]
Since the denominator is never zero and [tex]Q \neq 0[/tex], we can write:
[tex]\dfrac{\textrm{d}E}{\textrm{d}x} = 0 \iff(x^2+a^2)^{3/2} - 3x^2\sqrt{x^2 + a^2} = 0 \iff (x^2 + a^2)^{3/2} = 3x^2\sqrt{x^2+a^2}.[/tex]
Dividing both sides of the equation by [tex]\sqrt{x^2+a^2}[/tex], we get:
[tex]x^2 + a^2 = 3x^2 \iff 2x^2 = a^2 \iff x^2 = \dfrac{a^2}{2} \iff x = \pm \dfrac{a}{\sqrt{2}}, \textrm{ with } a > 0.[/tex]
We now need to check whether this is a maximum, a minimum or a saddle point. We can use the second derivative test, but there's an easier way. Since [tex]E(0) = 0[/tex], [tex]\lim\limits_{x \to \infty}E(x) = 0[/tex] and [tex]E(x) > 0[/tex] for [tex]x > 0[/tex], [tex]E[/tex] necessarily has a maximum, since [tex]E[/tex] is continuous.
Since we want positive values of [tex]x[/tex], the solution is:
[tex]x = \dfrac{a}{\sqrt{2}}.[/tex]