Answer:
YTM 5.2% present value: $1,023.1644
YTM 1% present value: $1,427.2169
YTM 8% present value: $830.1209
YTM 8% present value: $515.7617
Explanation:
YTM we will calculate the present value of the coupon payment
andthe maturity at each YTM rate given:
The coupon payment present value will be the present value of an ordinary annuity
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
Coupon payment 28 (1,000 x 2.75%)
time 20 (10 years x 2 payment per year)
rate 0.026 (YTM over 2 as the payment are semiannually)
[tex]27.5 \times \frac{1-(1+0.026)^{-20} }{0.026} = PV\\[/tex]
PV $424.6800
The present value of the maturity will be the present value of a lump sum:
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity 1,000.00
time 20.00
rate 0.026
[tex]\frac{1000}{(1 + 0.026)^{20} } = PV[/tex]
PV 598.48
PV c $424.6800
PV m $598.4843
Total $1,023.1644
Now, we will calculate changin the YTM the concept and formulas are the same, just the rate is diffrent:
If YTM = 1%
[tex]27.5 \times \frac{1-(1+0.005)^{-20} }{0.005} = PV\\[/tex]
[tex]\frac{1000}{(1 + 0.005)^{20} } = PV[/tex]
PV c $522.1540
PV m $905.0629
Total $1,427.2169
If YTM = 8%
[tex]27.5 \times \frac{1-(1+0.04)^{-20} }{0.04} = PV\\[/tex]
[tex]\frac{1000}{(1 + 0.04)^{20} } = PV[/tex]
PV c $373.7340
PV m $456.3869
Total $830.1209
If YTM = 15%
[tex]27.5 \times \frac{1-(1+0.075)^{-20} }{0.075} = PV\\[/tex]
[tex]\frac{1000}{(1 + 0.075)^{20} } = PV[/tex]
PV c $280.3485
PV m $235.4131
Total $515.7617