Respuesta :
The coordinates of the midpoint of a line segment is the average of the coordinates of the endpoints. Calculations for the coordinates of the other endpoint are shown below.
abscissa -1 = (5 + x) / 2 ; x = -7
ordinate 0 = (2 + x) / 2 ; y = -2
Thus, the coordinates of the endpoint is (-7, -2).
Answer:
(-7, -2)
Step-by-step explanation:
The coordinates of the midpoint of a segment having the end points [tex](x_1, y_1)[/tex] and [tex](x_2, y_2)[/tex] are,
[tex](\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})[/tex]
Here,
[tex]x_1 = 5\text{ and }y_1=2[/tex]
Also,
[tex](\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})=(-1,0)[/tex]
[tex](\frac{5+x_2}{2}, \frac{2+y_2}{2})=(-1,0)[/tex]
By equating the x- coordinates,
[tex]\frac{5+x_2}{2}=-1[/tex]
[tex]5+x_2=-2[/tex]
[tex]x_2=-2-5=-7[/tex]
By equating the y- coordinates,
[tex]\frac{2+y_2}{2}=0[/tex]
[tex]2+y_2=0[/tex]
[tex]y_2=-2[/tex]
Hence, the coordinates of the other endpoint i.e. D are,
(-7, -2)