Respuesta :

The coordinates of the midpoint of a line segment is the average of the coordinates of the endpoints. Calculations for the coordinates of the other endpoint are shown below.

                abscissa     -1 = (5 + x) / 2         ; x = -7

                ordinate       0 = (2 + x) / 2         ; y = -2

Thus, the coordinates of the endpoint is (-7, -2).

Answer:

(-7, -2)

Step-by-step explanation:

The coordinates of the midpoint of a segment having the end points [tex](x_1, y_1)[/tex] and [tex](x_2, y_2)[/tex] are,

[tex](\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})[/tex]

Here,

[tex]x_1 = 5\text{ and }y_1=2[/tex]

Also,

[tex](\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})=(-1,0)[/tex]

[tex](\frac{5+x_2}{2}, \frac{2+y_2}{2})=(-1,0)[/tex]

By equating the x- coordinates,

[tex]\frac{5+x_2}{2}=-1[/tex]

[tex]5+x_2=-2[/tex]

[tex]x_2=-2-5=-7[/tex]

By equating the y- coordinates,

[tex]\frac{2+y_2}{2}=0[/tex]

[tex]2+y_2=0[/tex]

[tex]y_2=-2[/tex]

Hence, the coordinates of the other endpoint i.e. D are,

(-7, -2)

ACCESS MORE