Respuesta :
Answer:
[tex]Q_{max} = 6,3928 W/m[/tex]
Explanation:
The thermal resistances in this case act as series resistances, so to get the total resistance you need to add al resitances:
[tex]R_{tot} = R_{contact} + R_{conductive} + R_{convective}[/tex]
To get the contact resistence per unit length we have to multiply the contact resistance by the perimeter of the contact area:
[tex]P_{wire-sheath} = \pi * 0,003m = 9,4248 * 10^{-3} m[/tex]
[tex]R_{contact} = \frac{3*10^{-4} m2 K/W}{9,4248 * 10^{-3} m} = 0,03183 m K/W[/tex]
For the conductive resistance on the sheath:
[tex]R_{conductive} = \frac{thickness}{k*P_{wire-sheath}} = \frac{ 0,002m}{9,4248 * 10^{-3} m * 0,13 W/mK} = 1,63 mK/W[/tex]
Convective resistance:
The perimeter of the auter surfice is:
[tex]P_{out-sheath} = \pi * 0,007m = 2,199* 10^{-2} m[/tex]
[tex]R_{convective} = \frac{1}{Convection coeficient * P_{out-sheath} } = \frac{ 1}{15 W/m^{2}K * 2,199* 10^{-2} m} = 3,031 mK/W[/tex]
Total Resistance:
[tex] R_{tot} = 4,6928 mK/W[/tex]
Heat transfer:
[tex]Q = dT/R_{tot}[/tex]
[tex]dT = T_{wire} - T_{amb} = 323 K - 293 K = 30 K[/tex]
[tex]Q_{max} = \frac{30K}{4,6928 mK/W} = 6,3928 W/m[/tex]