Answer:
a) [tex]v_{1} =-32ft/s\\v_{2} =-25.6ft/s\\v_{3} =-24.8ft/s\\v_{4} =-25ft/s[/tex]
b) [tex]v=-24ft/s[/tex]
Explanation:
The equation of the ball's motion is given by
[tex]y=40t-16t^{2}[/tex]
a) To find the average velocity we need to use the following formula:
[tex]v=\frac{y_{2}-y_{1} }{t_{2}-t_{1} }[/tex]
Since we know t=2,t=2.5,t=2.1,t=2.05,t=2.01 we need to find its position at these times.
[tex]y_{t=2}=40(2)-16(2)^{2}=16ft[/tex]
[tex]y_{t=2.5}=40(2.5)-16(2.5)^{2}=0ft[/tex]
[tex]v_{1} =\frac{(0-16)ft}{(2.5-2)s}=-32ft/s[/tex]
--
[tex]y_{t=2.1}=40(2.1)-16(2.1)^2=13.44ft[/tex]
[tex]v_{2} =\frac{(13.44-16)ft}{(2.1-2)s}=-25.6ft/s[/tex]
--
[tex]y_{t=2.05}=40(2.05)-16(2.05)^2=14.76ft[/tex]
[tex]v_{3} =\frac{(14.76-16)ft}{(2.05-2)s}=-24.8ft/s[/tex]
--
[tex]y_{t=2.01}=40(2.01)-16(2.01)^2=15.75ft[/tex]
[tex]v_{4} =\frac{(15.75-16)ft}{(2.01-2)s}=-25ft/s[/tex]
b) To find the instantaneous velocity when t=2 we need to derivate the equation of position
[tex]v=\frac{dy}{dt}=40-32t[/tex]
[tex]v=40-32(2)=-24ft/s[/tex]