Answer:
[tex]w=\frac{1}{2}m(v^2_2-v^2_1)[/tex]
Step-by-step explanation:
We are given that a variable force of magnitude F(x) moves a body along the x- axis from [tex]x_1[/tex] to [tex]x_2[/tex].
The net work done by the force in moving the body from [tex]x_1[/tex] to [tex]x_2[/tex] .
[tex]v_1[/tex]=Velocity of the body at [tex]x_1[/tex]
[tex]v_2=[/tex]Velocity of the body at [tex]x_2[/tex]
We know that
Work done=Final kinetic energy-Initial kinetic energy
[tex]w=\frac{1}{2}mv^2_2-\frac{1}{2}mv^2_1[/tex]
K.E=[tex]\frac{1}{2}mv^2[/tex]
[tex]Net\;work \;done=\frac{1}{2}m(v^2_2-v^2_1)[/tex]
Hence, the net work done by the force is given by
[tex]w=\frac{1}{2}m(v^2_2-v^2_1)[/tex]