Answer:
a) [tex]V_{avg} = 21.25m/min[/tex]
b) [tex]a_{avg} = 21.25m/min^{2}[/tex]
c) [tex]V_{avg} = 42.5m/min[/tex]
d) [tex]a_{avg} = 21.25m/min^{2}[/tex]
Explanation:
Before doing anything, we need the speed in the same units as time:
V = 1.19m/s * 60s/min = 71.4m/min
Now, for part (a) we need position at t=1min and t=4.36min. Position at t=1min was 0m and at t=4.36min:
X=V*Δt = 71.4*(4.36-3.36)=71.4m
With this value, we can proceed to calculate average speed:
[tex]V_{avg}=\frac{X_{4.36}-X_{1}}{4.36-1}=21.25m/min[/tex]
And for the acceleration:
[tex]a_{avg}=\frac{V_{4.36}-V_{1}}{4.36-1}=\frac{71.4-0}{3.36}=21.25m/min^{2}[/tex]
For part (c) and (d) we proceed similarly:
X=V*Δt = 71.4*(5.36-3.36)=142.8m
With this value, we can proceed to calculate average speed:
[tex]V_{avg}=\frac{X_{5.36}-X_{2}}{5.36-2}=42.5m/min[/tex]
And for the acceleration:
[tex]a_{avg}=\frac{V_{5.36}-V_{2}}{5.36-2}=\frac{71.4-0}{3.36}=21.25m/min^{2}[/tex]