Respuesta :
Answer:
10
Step-by-step explanation:
First, factorize the number 3,240:
[tex]3,240=2\cdot 1,620=2\cdot 2\cdot 810=2\cdot 2\cdot 2\cdot 405=2\cdot 2\cdot 2\cdot 2\cdot 5\cdot 81=2^3\cdot 5\cdot 9^2[/tex]
So,
[tex]3,240=2^2 \cdot 2\cdot 5\cdot 9^2=18^2\cdot 10[/tex]
Now consider the fraction
[tex]\dfrac{3,240}{k}=\dfrac{18^2\cdot 10}{k}[/tex]
If k = 10, then
[tex]\dfrac{3,240}{k}=\dfrac{18^2\cdot 10}{10}=18^2[/tex]
is a square number.
For all k < 10, the fraction tex]\dfrac{3,240}{k}[/tex] is not a square number (this follows from factorization).
Or you can simply check the values of the fraction for all k < 10:
- k = 1, [tex]\dfrac{3,240}{1}=3,240[/tex] is not a square number;
- k = 2, [tex]\dfrac{3,240}{2}=1,620[/tex] is not a square number;
- k = 3, [tex]\dfrac{3,240}{3}=1,080[/tex] is not a square number;
- k = 4, [tex]\dfrac{3,240}{4}=810[/tex] is not a square number;
- k = 5, [tex]\dfrac{3,240}{5}=648[/tex] is not a square number;
- k = 6, [tex]\dfrac{3,240}{6}=540[/tex] is not a square number;
- k = 7, [tex]\dfrac{3,240}{7}[/tex] is not a square number;
- k = 8, [tex]\dfrac{3,240}{8}=405[/tex] is not a square number;
- k = 9, [tex]\dfrac{3,240}{9}=360[/tex] is not a square number.
