Explanation:
Given that,
Amplitude of wave, A = 18 cm = 0.18 m
Frequency of wave, f = 0.85 Hz
(a) The maximum velocity in SHM is given by :
[tex]v=\omega\times A[/tex]
[tex]v=2\pi f\times A[/tex]
[tex]v=2\pi \times 0.85 \times 0.18[/tex]
v = 0.96 m/s
The maximum acceleration in SHM is given by :
[tex]a=\omega^2\times A[/tex]
[tex]a=4\pi ^2f^2\times A[/tex]
[tex]a=4\pi ^2\times 0.85^2\times 0.18[/tex]
[tex]a=5.13\ m/s^2[/tex]
(b) The velocity of particle at point x is given by :
[tex]v=\omega \sqrt{A^2-x^2}[/tex]
[tex]v=2\pi f \sqrt{A^2-x^2}[/tex]
at x = 9 cm = 0.09 m
[tex]v=2\pi \times 0.85 \sqrt{(0.18)^2-(0.09)^2}[/tex]
v = 0.83 m/s
The acceleration of particle at point x is given by :
[tex]a=-\omega^2\times x[/tex]
[tex]a=-4\pi ^2f^2\times x[/tex]
[tex]a=-4\pi ^2\times 0.85^2\times 0.09[/tex]
[tex]a=-2.56\ m/s^2[/tex]
(c) The equation of SHM is given by :
[tex]x=Acos(\omega t+\phi)[/tex]
Let [tex]\phi=\dfrac{-\pi}{2}[/tex] (at the particle is at x = 0 at t = 0 )
[tex]t=\dfrac{1}{\omega}\ sin^{-1}(\dfrac{x}{A})[/tex]
[tex]t=\dfrac{1}{2\pi f}\ sin^{-1}(\dfrac{x}{A})[/tex]
[tex]t=\dfrac{1}{2\pi \times 0.85}\ sin^{-1}(\dfrac{0.12}{0.18})[/tex]
t = 0.13 seconds
Hence, this is the required solution.