Respuesta :
Answer:
(a) A y P(A) = 0.4 (b) [tex]\bar{B}[/tex] y [tex]P(\bar{B})[/tex]=0.5 (c) [tex]\bar{A}[/tex]∪[tex]\bar{B}[/tex] y P([tex]\bar{A}[/tex]∪[tex]\bar{B}[/tex]) = 0.9 (d) [tex]\bar{A}[/tex]∩[tex]\bar{B}[/tex] y P([tex]\bar{A}[/tex]∩[tex]\bar{B}[/tex])=0.2
Step-by-step explanation:
A was defined as the event that a potential customer, randomly chosen, buys from outlet 1 in the original problem statement. We know that B denotes the event that a randomly chosen customer buys from outlet 2. So
P([tex]A\cap \bar{B}[/tex]) = 0.3, P([tex]B\cap \bar{A}[/tex]) = 0.4 and P([tex]A\cap B[/tex]) = 0.1
(a) P(A) = P([tex]A\cap (B\cup\bar{B})[/tex]) = P([tex]A\cap B[/tex]) + P([tex]A\cap \bar{B}[/tex]) = 0.1 + 0.3 = 0.4
(b) P(B) = P([tex]B\cap (A\cup\bar{A})[/tex]) = P([tex]B\cap A[/tex]) + P([tex]B\cap \bar{A}[/tex]) = 0.1 + 0.4 = 0.5
P( [tex]\bar{B}[/tex]) = 1-P(B) = 1-0.5 = 0.5
(c) The customer does not buy from outlet 1 is the complement of A, i.e., [tex]\bar{A}[/tex], and the customer does not buy from outlet 2 is the complement of B, i.e., [tex]\bar{B}[/tex], so, the customer does not buy from outlet 1 or does not buy from outlet 2 is [tex]\bar{A}[/tex]∪ [tex]\bar{B}[/tex] and P([tex]\bar{A}[/tex]∪ [tex]\bar{B}[/tex]) = P([tex](A\cap B)^{c}[/tex]) by De Morgan's laws
P([tex](A\cap B)^{c}[/tex]) = 1-P(A∩B)=1-0.1=0.9
(d) The customer does not buy from outlet 1 is the complement of A, and the customer does not buy from outlet 2 is the complement of B, so we have that the statement in (d) is equivalent to [tex]\bar{A}[/tex]∩[tex]\bar{B}[/tex] and P( [tex]\bar{A}[/tex]∩[tex]\bar{B}[/tex]) = P([tex](AUB)^{c}[/tex]) by De Morgan's laws, and
P([tex](AUB)^{c}[/tex]) = 1-P(A∪B)=1-[P(A)+P(B)-P(A∩B)]=1-[0.4+0.5-0.1]=1-0.8=0.2