Explanation:
The electrostatic forces are conservative forces!
The mainly property of the conservative fields is [tex]\vec{\nabla} \times \vec E=\vec 0[/tex]
In spherical coordinates the field's expression is:
[tex]\vec E=\frac{Q}{4\pi \epsilon _0 r^2} .\^r[/tex]
and the curl expression is:
[tex]\nabla\times \vec E=\frac{1}{r^2{\sin}\,\theta}\left|\begin{matrix}\hat{r} & r\,\hat{\theta} & r\,{\sin}\,\theta\,\hat{\varphi} \\& & \\\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \varphi}\\ & & \\E_r & rE_\theta & r{\sin}\,\theta\, E_\varphi\end{matrix}\right|=(0, 0, 0)[/tex]
to find the expression for the potential function associated:
[tex]\vec E=\vec \nabla . V, \Delta V= V_b-V_a=-\int _c \vec E.d\vec l=-\int _c E\^r.dr\^r=-\int _c Edr=\int \limits^a_b \frac{Q}{4\pi \epsilon _0 r^2} dr= \frac{Q}{4\pi \epsilon _0}.(\frac{1}{r}|^b_a)= \frac{Q}{4\pi \epsilon _0}.(\frac{1}{b}-\frac{1}{a})[/tex]