Answer:
[tex]y^{\frac{1}{4}}[/tex] or [tex]\sqrt[4]{y}[/tex], where, y≥0.
Step-by-step explanation:
The given expression is
[tex]\sqrt[8]{y^2}[/tex]
We need to find the simplified form of the given expression.
Convert the radical expression in exponent form.
[tex](y^2)^{\frac{1}{8}}[/tex] [tex][\because \sqrt[n]{x}=x^{\frac{1}{n}}][/tex]
Using the power property of exponent, we get
[tex]y^{2\times \frac{1}{8}}[/tex] [tex][\because (a^m)^n=a^{mn}][/tex]
[tex]y^{\frac{2}{8}}[/tex]
[tex]y^{\frac{1}{4}}[/tex]
Convert the exponent form in radical expression.
[tex]\sqrt[4]{y}[/tex]
Therefore the simplified form of given expression is [tex]y^{\frac{1}{4}}[/tex] or [tex]\sqrt[4]{y}[/tex], where, y≥0.