Answer:
x=9
Step-by-step explanation:
Given information: KM bisects ∠JKL, m∠JKL = 92, and m∠MKL = (5x+1).
It is given that KM bisects ∠JKL. It means line KM divides the angle in two equal parts.
[tex]m\angle JKM=m\angle MKL[/tex] .... (1)
The ∠JKL is the sum of ∠JKM and ∠MKL.
[tex]m\angle JKM=m\angle JKM+m\angle MKL[/tex]
Using equation (1) we get
[tex]m\angle JKM=m\angle MKL+m\angle MKL[/tex] [tex]m\angle JKM=m\angle MKL[/tex]
[tex]m\angle JKM=2(m\angle MKL)[/tex]
Substitute m∠JKL = 92 and m∠MKL = (5x+1) in the above equation.
[tex]92=2(5x+1)[/tex]
[tex]92=2(5x)+2(1)[/tex]
[tex]92=10x+2[/tex]
Subtract 2 from both sides.
[tex]92-2=10x[/tex]
[tex]90=10x[/tex]
Divide both sides by 10.
[tex]\frac{90}{10}=x[/tex]
[tex]9=x[/tex]
Therefore, the value of x is 9.