Answer:
Step-by-step explanation:
Given that
i) population is growing exponentially
ii) P-0 = initial population at 1980 = 30 million
iii) In 1990, i.e. when t =10, P = 80 m
Let us assume
[tex]P(t) = P_0 e^{kt} \\P(t) = 30 e^{kt}[/tex]
Since P(10) =80 is given we have
[tex]80 = 30e^{kt}\\e^{k(10)} = 2.667\\k=\frac{ln 2.667}{10} =0.0981[/tex]
Hence we get
[tex]P(t) = 30 e^{0.0981t}[/tex]
b) For 2000, t = 20
[tex]P(20) = 30 e^{0.0981(20)} \\=213.36[/tex]
i.e. 213.4 million
c) Doubling time is whenP = 60
[tex]P(t) = P_0 e^{0.0981t} \\0.0981 t = ln 2\\t =7.065[/tex]
In 7.1 years