Answer: Frequency corresponding to a photon possessing this energy is [tex]0.5\times 10^{15}Hertz[/tex]
Wavelength for this photon is 600 nm.
Explanation:
The relationship between wavelength and energy of the wave follows the equation:
[tex]E=\frac{hc}{\lambda}[/tex]
E= energy
[tex]\lambda [/tex] = wavelength of the wave
h = Planck's constant = [tex]6.626\times 10^{-34}Js[/tex]
c = speed of light = [tex]3\times 10^8m/s[/tex]
[tex]3.373\times 10^{-19}=\frac{6.626\times 10^{-34}\times 3\times 10^8m/s}{\lambda}[/tex]
[tex]\lambda=6\times 10^{-7}m=600nm[/tex] [tex]1m=10^9nm[/tex]
Thus wavelength for this photon is 600 nm.
The relationship between wavelength and frequency of the wave follows the equation:
[tex]\nu=\frac{c}{\lambda}[/tex]
where,
[tex]\nu[/tex] = frequency of the wave
c = speed of light
[tex]\nu=\frac{3\times 10^8m/s}{6\times 10^{-7}m}[/tex]
[tex]\nu=0.5\times 10^{15}s^{-1}=0.5\times 10^{15}Hertz[/tex]
Thus frequency corresponding to a photon possessing this energy is [tex]0.5\times 10^{15}Hertz[/tex]