Answer:
∅=10.7°
Explanation:
In parabolic motion the position on the x-axis can be found like this.
[tex]x=V_{0}.cos \theta.t[/tex]
Where we clear the time.
[tex]t=\frac{x}{v_{0}cos\theta}=\frac{45}{30cos\theta}[/tex]
The position on the y-axis can be found as well.
[tex]y=v_{0}sin\theta.t-\frac{1}{2}a.t^{2} =30sin\theta.t-\frac{1}{2}9.8t^{2}[/tex]
replacing time.
[tex]2.90=30sin\theta(\frac{45}{30cos\theta})-4.9(\frac{45}{30cos\theta})^{2}[/tex]
[tex]2.9=45tan\theta-11.025sec^{2}\theta=45tan\theta-11.025(1+tan^{2}\theta)[/tex]
[tex]-11.025tan^{2}\theta+45tan\theta-8.125=0[/tex]
Now we use the quadratic equation to find the tangent of the angle.
[tex]tan\theta=3.89\\ and\\ tan\theta=0.19[/tex]
Finally we use the arc tangent function to find the angle.
[tex]\theta=75.6\\ and\\ \theta=10.7[/tex]
We choose the second angle because it adapts to the situation described, that is the minimum angle.