Step-by-step explanation:
We have given,
[tex]Wavelength\ of the\ light(\lambda)} = 690mm = 690 \times 10^{-9}m[/tex]
[tex]\text {width of the slit(w)} = 0.0329\ mm = 0.0329 \times 10^{-3}m[/tex]
distance of the slit from the screen(d) = 3.2m
distance from the central maximum(m) = 1.3cm = 0.013m
Now,
(a). The expression for the angle of the inclination of the wave is ([tex]\theta[/tex] )
[tex]\theta = sin^{-1} \dfrac md\\\theta = sin^{-1}( \dfrac {0.013}{3.2})\\\\\theta = sin^{-1}(0.0040625)\\\\\theta = sin^{-1}(sin 0.23^o)[/tex]
Thus the angle of inclination of the wave is
[tex]\theta= 0.23^o[/tex]
(b). The expression for the angle [tex]\alpha[/tex]
[tex]\alpha = \dfrac {\pi \times w}{\lambda} sin \theta\\\alpha = \dfrac {3.14 \times 0.0329 \times 10^{-3}}{690 \times 10^{-9}} sin {0.23^o}\\\\\alpha = \dfrac {3.14 \times 0.0329 \times 10^{-3} \times 0.004.625}{690 \times 10^{-9}}[/tex]
after solving the equation we get,
Thus the angle [tex]\alpha[/tex] = 0.61 radian
(c). the expression for the ratio of the intensity is
[tex]\dfrac{I_0}{I} = (\dfrac {sin \alpha}{\alpha}) ^2[/tex]
[tex]\dfrac{I_0}{I} = (\dfrac {sin (0.61)}{0.61})^2\\\dfrac{I_0}{I} = (\dfrac {0.0.65}{0.61})^2\\\dfrac{I_0}{I} = 0.0305[/tex]
Thus the ratio of the intensity is 0.0305