Let P and Q be polynomials with positive coefficients. Consider the limit below. lim x→[infinity] P(x) Q(x) (a) Find the limit if the degree of P is less than the degree of Q. 0 (b) Find the limit if the degree of P is greater than the degree of Q.

Respuesta :

Answer:

If the limit that you want to find is [tex]\lim_{x\to \infty}\dfrac{P(x)}{Q(x)}[/tex] then you can use the following proof.

Step-by-step explanation:

Let [tex]P(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+\cdots+a_{1}x+a_{0}[/tex] and [tex]Q(x)=b_{m}x^{m}+b_{m-1}x^{n-1}+\cdots+b_{1}x+b_{0}[/tex] be the given polinomials. Then

[tex]\dfrac{P(x)}{Q(x)}=\dfrac{x^{n}(a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)}+a_{0}x^{-n})}{x^{m}(b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m})}=x^{n-m}\dfrac{a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)})+a_{0}x^{-n}}{b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m}}[/tex]

Observe that

[tex]\lim_{x\to \infty}\dfrac{a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)})+a_{0}x^{-n}}{b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m}}=\dfrac{a_{n}}{b_{m}}[/tex]

and

[tex]\lim_{x\to \infty} x^{n-m}=\begin{cases}0& \text{if}\,\, n<m\\\infty & \text{if}\,\, n>m\end{cases}[/tex]

Then

[tex]\lim_{x\to \infty}=\lim_{x\to \infty}x^{n-m}\dfrac{a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)}+a_{0}x^{-n}}{b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m}}=\begin{cases}0 & \text{if}\,\, n<m\\\infty & \text{if}\,\,n>m \end{cases}[/tex]

ACCESS MORE