Respuesta :

Answer:

B

Step-by-step explanation:

Comparing like terms on both sides

[tex]x^{6}[/tex] → x²

Note that x² = [tex]\sqrt[3]{x^{6} }[/tex]

[tex]y^{12}[/tex] → [tex]y^{4}[/tex]

Note that [tex]y^{4}[/tex] = [tex]\sqrt[3]{y^{12} }[/tex]

Also

54 → 3

Note that 54 = 3³ × 2

and [tex]\sqrt[3]{54}[/tex] = [tex]\sqrt[3]{3^{3}(2) }[/tex] = 3[tex]\sqrt[3]{2}[/tex]

Hence

[tex]\sqrt[3]{54x^{6}y^{12}  }[/tex] = 3x²[tex]y^{4}[/tex][tex]\sqrt[3]{2}[/tex]

Hence n = 3 → B

ACCESS MORE