Can someone help me please??

Answer:
B
Step-by-step explanation:
Comparing like terms on both sides
[tex]x^{6}[/tex] → x²
Note that x² = [tex]\sqrt[3]{x^{6} }[/tex]
[tex]y^{12}[/tex] → [tex]y^{4}[/tex]
Note that [tex]y^{4}[/tex] = [tex]\sqrt[3]{y^{12} }[/tex]
Also
54 → 3
Note that 54 = 3³ × 2
and [tex]\sqrt[3]{54}[/tex] = [tex]\sqrt[3]{3^{3}(2) }[/tex] = 3[tex]\sqrt[3]{2}[/tex]
Hence
[tex]\sqrt[3]{54x^{6}y^{12} }[/tex] = 3x²[tex]y^{4}[/tex][tex]\sqrt[3]{2}[/tex]
Hence n = 3 → B