Respuesta :
Explanation:
It is given that, in analyzing distances by applying the physics of gravitational forces, an astronomer has obtained the expression as :
We need to evaluate the value of R using calculator.
[tex]R=\sqrt{\dfrac{1}{(\dfrac{1}{149\times10^9\ })^2-(\dfrac{1}{208\times10^9\ })^2}}[/tex]..............(1)
[tex](\dfrac{1}{140\times10^9\ })^2=5.10\times 10^{-23}[/tex]
[tex](\dfrac{1}{208\times10^9\ })^2=2.31\times 10^{-23}[/tex]
On solving equation (1) we get the value of R as :
[tex]R=2.13\times 10^{11}\ meter[/tex]
So, the calculated distance from above expression is [tex]2.13\times 10^{11}\ meter[/tex]. Hence, this is he required solution.
Answer : The correct value of R is, [tex]1.89\times 10^{11}m[/tex]
Explanation :
The given expression is:
[tex]R=\sqrt{\frac{1}{(\frac{1}{140\times 10^9m})^2-(\frac{1}{208\times 10^9m})^2}}[/tex]
[tex]R=\sqrt{\frac{1}{(7.143\times 10^{-12})^2-(4.808\times 10^{-12})^2}}[/tex]
[tex]R=\sqrt{\frac{1}{(5.102\times 10^{-23})-(2.312\times 10^{-23})}[/tex]
[tex]R=\sqrt{\frac{1}{(2.79\times 10^{-23})}[/tex]
[tex]R=\sqrt{(3.584\times 10^{22})}[/tex]
[tex]R=1.89\times 10^{11}m[/tex]
Therefore, the value of R is, [tex]1.89\times 10^{11}m[/tex]