contestada

In analyzing distances by apply ing the physics of gravitational forces, an astronomer has obtained the expression
R= √1/([1/140×10^9 meter]^2 - [1/208×10^9]^2)
Use your calculator to evaluate R. View Available Hint(s)
(A) 3.87 x 10-12 meter
(B) 1.72× 1011 meter
(C) 2.58 x 1011 meter
(D) 1.49 x 1011 meter

Respuesta :

Explanation:

It is given that, in analyzing distances by applying the physics of gravitational forces, an astronomer has obtained the expression as :

We need to evaluate the value of R using calculator.

[tex]R=\sqrt{\dfrac{1}{(\dfrac{1}{149\times10^9\ })^2-(\dfrac{1}{208\times10^9\ })^2}}[/tex]..............(1)

[tex](\dfrac{1}{140\times10^9\ })^2=5.10\times 10^{-23}[/tex]

[tex](\dfrac{1}{208\times10^9\ })^2=2.31\times 10^{-23}[/tex]

On solving equation (1) we get the value of R as :

[tex]R=2.13\times 10^{11}\ meter[/tex]

So, the calculated distance from above expression is [tex]2.13\times 10^{11}\ meter[/tex]. Hence, this is he required solution.  

Answer : The correct value of R is, [tex]1.89\times 10^{11}m[/tex]

Explanation :

The given expression is:

[tex]R=\sqrt{\frac{1}{(\frac{1}{140\times 10^9m})^2-(\frac{1}{208\times 10^9m})^2}}[/tex]

[tex]R=\sqrt{\frac{1}{(7.143\times 10^{-12})^2-(4.808\times 10^{-12})^2}}[/tex]

[tex]R=\sqrt{\frac{1}{(5.102\times 10^{-23})-(2.312\times 10^{-23})}[/tex]

[tex]R=\sqrt{\frac{1}{(2.79\times 10^{-23})}[/tex]

[tex]R=\sqrt{(3.584\times 10^{22})}[/tex]

[tex]R=1.89\times 10^{11}m[/tex]

Therefore, the value of R is, [tex]1.89\times 10^{11}m[/tex]