Answer:
68% Confidence interval = [4.5752, 4.5848]
95% Confidence interval = [4.5688, 4.5918]
Step-by-step explanation:
Sample mean (X) = 4.580
Sample Standard Deviation (S) = 0.01065
Sample size (n) = 6
[tex]T_{(5)}[/tex] for alpha/2 0.84 = 1.1037
[tex]T_{(5)}[/tex] for alpha/2 0.975 = 2.5706
68% Confidence interval = [tex][x-T_{(5)}\frac{S}{\sqrt{n}}, x+T_{(5)]\frac{S}{\sqrt{n}}][/tex] = [4.5752, 4.5848]
95% Confidence interval = [tex][x-T_{(5)}\frac{S}{\sqrt{n}}, x+T_{(5)}\frac{S}{\sqrt{n}}][/tex] = [4.5688, 4.5918]