Answer:
Step-by-step explanation:
Given that
[tex]f(x, y, z) = x + ln(2y + 3z^2 )[/tex]
Let us find partial derivatives one by one
[tex]\frac{∂f }{∂x} =1\\\frac{∂^2f }{∂y∂x} =\frac{∂ }{∂y}(1) =0\\\frac{∂^3f }{∂z∂y∂x} =\frac{∂ }{∂z}(0) =0[/tex]
At the point (2,1,-2)
[tex]\frac{∂^2f }{∂y∂x}=0[/tex]
(since at all points the value is constant 0)