Answer:
[tex]f (0.8) = 22.3607[/tex] and [tex]P_{2} (0.8) = 22.300[/tex].
Step-by-step explanation:
According to the statement, [tex]f (x) = \frac{20}{\sqrt{x}}[/tex] and [tex]P_{2}(x) = 20 - 10 (x-1) + 7.5 (x-1) ^ 2[/tex]. Based on these definitions, at [tex]x=0.8[/tex] produce:
[tex]f (0.8) = \frac{20}{\sqrt {0.8}} = 22.3607[/tex]. On the other hand, you have to:
[tex]P_{2} (0.8) = 20 - 10 (0.8 -1) +7.5 (0.8 -1)^2[/tex]
[tex]P_{2} (0.8) = 20 - 10 (-0.2) +7.5 (-0.2)^2 = 22.300[/tex]
Then, it can be affirmed that [tex]f (0.8) = 22.3607[/tex] and [tex]P_{2} (0.8) = 22.300[/tex].