The components of a vector V¯ can be written (Vx , Vy , Vz). What is the length of a vector which is the sum of the two vectors V1¯ and V2¯ whose components are (8.0, -3.7, 0.0) and (3.9, -8.1, -4.4)?

Respuesta :

Answer:

[tex]\overrightarrow{V_{2}}=\left ( 3.9, -8.1, -4.4 \right )[/tex]

[tex]V_{2} = \sqrt{3.9^{2}+(-8.1)^{2}+ (-4.4)^{2}}=10.00[/tex]

Explanation:

A vector V is given in the component form

[tex]\overrightarrow{V}=\left ( V_{x}, V_{y}, V{_{z}} \right )[/tex]

The length of vector v is given by

[tex]V = \sqrt{V_{x}^{2}+V_{y}^{2}+ V_{z}^{2}}[/tex]

Here vector

[tex]\overrightarrow{V_{1}}=\left ( 8,-3.7,0 \right )[/tex]

The length of this vector is given by

[tex]V_{1} = \sqrt{8^{2}+(-3.7)^{2}+ 0^{2}}=8.814[/tex]

The another vector is

[tex]\overrightarrow{V_{2}}=\left ( 3.9, -8.1, -4.4 \right )[/tex]

The length of this vector is given by

[tex]V_{2} = \sqrt{3.9^{2}+(-8.1)^{2}+ (-4.4)^{2}}=10.00[/tex]