Answer:
[tex]\overrightarrow{V_{2}}=\left ( 3.9, -8.1, -4.4 \right )[/tex]
[tex]V_{2} = \sqrt{3.9^{2}+(-8.1)^{2}+ (-4.4)^{2}}=10.00[/tex]
Explanation:
A vector V is given in the component form
[tex]\overrightarrow{V}=\left ( V_{x}, V_{y}, V{_{z}} \right )[/tex]
The length of vector v is given by
[tex]V = \sqrt{V_{x}^{2}+V_{y}^{2}+ V_{z}^{2}}[/tex]
Here vector
[tex]\overrightarrow{V_{1}}=\left ( 8,-3.7,0 \right )[/tex]
The length of this vector is given by
[tex]V_{1} = \sqrt{8^{2}+(-3.7)^{2}+ 0^{2}}=8.814[/tex]
The another vector is
[tex]\overrightarrow{V_{2}}=\left ( 3.9, -8.1, -4.4 \right )[/tex]
The length of this vector is given by
[tex]V_{2} = \sqrt{3.9^{2}+(-8.1)^{2}+ (-4.4)^{2}}=10.00[/tex]