Answer:
V = 240π cm^3 , S= 168π cm^2
Step-by-step explanation:
The given figure is a combination of hemi-sphere and a cone
Volume:
For volume
r = 6 cm
h = 8 cm
[tex]Volume\ of\ cone = \frac{1}{3}\pi r^2h\\= \frac{1}{3}\pi (6)^2*8\\=\frac{1}{3}\pi *36*8\\=\frac{288}{3}\pi\\=96\pi cm^3 \\\\Volume\ of\ hemisphere = \frac{2}{3}\pi r^3\\=\frac{2}{3}*\pi * (6)^3\\=\frac{2}{3}*\pi *216\\=\frac{432}{3}\\=144\pi cm^3 \\\\Total\ Volume= Volume\ of\ cone + Volume\ of\ hemisphere\\= 96\pi +144\pi \\=240\pi cm^3[/tex]
Surface Area:
For this particular figure we have to consider the lateral area of the cone shape and surface area of the hemisphere
We have to find the lateral height
[tex]l = \sqrt{r^2+h^2}\\ l = \sqrt{(6)^2+(8)^2} \\l= \sqrt{36+64}\\ l = \sqrt{100}\\l = 10cm\\\\Surface\ area\ of\ cone = \pi rl\\= \pi (6)(10)\\=\pi *60\\=60 \pi\ cm^2\\\\Surface\ area\ of\ hemisphere = 2\pi r^2\\= 2 \pi * (6)\\= 2 \pi *36\\= 72 \pi\ cm^2\\\\Total\ surface\ Area = Surface\ area\ of\ cone + Surface\ area\ of \ hemisphere\\= 60 \pi + 72 \pi\\=132 \pi\ cm^2[/tex]
Hence the first option is correct ..